Course Outcomes – Program Outcomes (COPO) Mapping For BSc Life Science (LOCF)

Life Science has three components:

- I. BSc LIFE SCIENCE BOTANY COMPONENT
- II. BSc LIFE SCIENCE ZOOLOGY COMPONENT
- III. BSc LIFE SCIENCE CHEMISTRY COMPONENT

Learning Outcome-based Curriculum Framework (LOCF)

The LOCF approach is envisioned to provide a focused, outcome-based syllabus at the undergraduate level with an agenda to structure the teaching-learning experiences in a more student-centric manner.

Sno.	Nomenclature	Description	Aggregate Courses
1.	PO	Program	PO1, PO2, PO3, PO4, PO5, PO6, PO7, PO8
		Outcome	
2.	СО	Course	CO1, CO2, CO3, CO4, CO5, CO6, CO7, CO8
		Outcome	
3.	CC	Core Courses	CC1, CC2, CC3, CC4
4.	DSE	Discipline	DSE1, DSE2
		Specific	
		Electives	

ABBREVIATIONS / NOMENCLATURE

I. BSc LIFE SCIENCE BOTANY COMPONENT

PROGRAM OUTCOMES (PO): BSc LIFE SCIENCE BOTANY COMPONENT

Program Outcomes (PO): B.Sc Life Science (Botany)	Statements
PO1	Students of the B.Sc. Life Sciences programme will learn to use scientific logic as they explore a wide range of contemporary subjects spanning various basic and applied aspects life sciences
PO2	Students will appreciate the biological diversity of plant and animals and compounds in them to be able to describe/explain the processes used by microorganisms for their replication, survival, and interaction with their environment, hosts, and host populations. They will become aware of the important role of plant and animals in ecosystem functioning
PO3	Students will gain knowledge of various biotechnological applications of plants and animals and will learn of industrially important natural products produced by them.
PO4	Students will become familiar with scientific methodology, hypothesis generation and testing, design and execution of experiments. Students will develop the ability to think critically and to read and analyze scientific literature.
PO5	Students will acquire and demonstrate proficiency in good laboratory practices in biological sciences and be able to explain the theoretical basis and practical skills of the tools/technologies commonly used to study this field.
PO6	Students will develop proficiency in the quantitative skills necessary to analyze biologicalproblems (e.g., arithmetic, algebra, and statistical methods as applied to biology)
PO7	Students will develop strong oral and written communication skills through the effective Presentation of experimental results as well as through seminars.
PO8	Graduates of the B.Sc. programme in Life Sciences will make the students understand and evaluate the impact of new research discoveries in the life sciences, and will be able to stimulate to think on wide range of careers, including biological and medical research in higher education institutions as well as careers in public and global health, scientific writing, environmental organizations, and food, pharmaceuticals and biotechnology industries.

Course Outcomes (CO): BSc LIFE SCIENCE BOTANY COMPONENT

	SEMESTER 1: CC1: Biodiversity (Microbes, Fungi, Algae and Archegoniatae)												
Unique Paper Code	Name of the Paper	Course Outcome: CO	Statement										
42161101	CC1: Biodiversity (Microbes,	CO1	Understand the world of fungi, and pathogens of plants										
	Fungi, Algae and	CO2	Appreciate the characteristics of the fungi										
	Archegoniatae)	CO3	Understand the ecological and economic significance of lichen										
		CO4	0										
	CO5 Understand the economic and pathologica importance of fungi, bacteria and viruses												
		CO6	Identify common plant diseases and their control measures.										

Papers	SEMESTER I: COPO MAPPING Program Outcome : PO											
	Course Outcome: CO	PO1	PO2	PO3		PO5	PO6	PO7	PO8			
	CO1		~									
CC1	CO2		✓	√								
	CO3	~	✓									
	CO4	~	✓						~			
	CO5		✓						~			

CO6	✓			\checkmark

	SEMESTER II: CC2: Plant Anatomy and Embryology											
Unique Paper Code	Name of the Paper	Course Outcome: CO	Statement									
		CO1	Knowledge regarding anatomy equipped the students to identify different types of tissues and make them able to correlate their physiology in a better away.									
42164301	CC2: Plant Anatomy and Embryology	CO2	This will also help them to understand how different plant tissue evolve and modify their structure and functions with respect to their environment.									
		CO3	Knowledge regarding embryology make them understand how reproduction play significant role in defining population structure, natural diversity and sustainability of ecosystem in a better way									

Papers	SEMESTER II: COPO MAPPING											
		Program Outcome : PO										
	Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8			
	Outcome:											
	CO											
	CO1	✓	\checkmark									
CC2												
	CO2	✓	\checkmark						✓			
	CO3	✓	\checkmark						✓			

	SEMESTER III: CC3: Plant Ecology and Taxonomy											
Unique Paper Code	Name of the Paper	Course Outcome: CO	Statement									
42161201	CC3 : Plant Ecology and	CO1	After successful completion of the course the student shall have adequate knowledge about the introduction to environment and taxonomy.									
	Taxonomy CO2 Basic principles of environment and taxonomy											

Papers	SEMESTER III: COPO MAPPING Program Outcome : PO											
	Course Outcome: CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8			
CC3	CO1	~	✓									
	CO2	~	✓	~	~				~			

	SEMESTER IV: CC4: Plant Physiology and Metabolism												
Unique Paper Code	Name of the Paper	Course Outcome: CO	Statement										
42164401	CC4: Plant Physiology and Metabolism	CO1	The students are able to correlate morphology, anatomy, cell structure and biochemistry with plant functioning.										

CO2	The link between theory and practical syllabus
	is established, and the employability of youth
	would be enhanced. The youth can also begin
	small-scale enterprises.

Papers	SEMESTER IV: COPO MAPPING Program Outcome : PO										
	Course Outcome: CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		
CC4	CO1		√						√		
	CO2		~		~				\checkmark		

	SEMESTER V:								
	DSE1: Cell and Molecular biology								
Unique Paper Code	Name of the Paper	Course Outcome: CO	Statement						
42167902	DSE1 : Cell and	CO1	This course will be able to demonstrate foundational knowledge in understanding of: The relationship between the properties of macromolecules, their cellular activities and biological responses						
	Molecular Biology	CO2	Understanding of Cell metabolism, chemical composition, physiochemical and functional organization of organelle Contemporary approaches in modern cell and molecular biology.						
		CO3	Understanding of nucleic acid, organization of DNA in prokaryotes and Eukaryotes, DNA replication mechanism, genetic code and transcription process.						
		CO4	Processing and modification of RNA and translation process, function and regulation of expression and Application in biotechnology						

Papers	SEMESTER V: COPO MAPPING Program Outcome : PO											
	Course											
	Outcome:											
	CO											
	CO1		\checkmark						\checkmark			
DSE1												
	CO2		\checkmark			\checkmark			\checkmark			
	CO3		\checkmark						\checkmark			
	CO4		\checkmark			√			√			

	SEMESTER VI: DSE2: Economic Botany and Biotechnology							
Unique	Name of the	Course						
Paper	Paper	Outcome:	Statement					
Code		CO						
			Understanding of morphology and processing and economic value of plant					
42167901	DSE2:	CO1	sources of cereals, legumes, spices, oil,					
	Economic		rubber, timber and medicines					
	Botany and	CO2	Economic value of plant sources of cereals,					
	Biotechnology		legumes, spices, oil, rubber, timber and medicines					

Papers	SEMESTER VI: COPO MAPPING									
	Course	Program Outcome : POCoursePO1PO2PO3PO4PO5PO6PO7PO8								
	Outcome:									
	CO									
	CO1					\checkmark			\checkmark	
DSE2										
	CO2		✓	\checkmark					✓	

II. BSc LIFE SCIENCE ZOOLOGY COMPONENT

PROGRAM OUTCOMES (PO): BSc LIFE SCIENCE ZOOLOGY COMPONENT

Program Outcomes (PO): B.Sc Life Sciences (Zoology)	Statements
PO1	Students enrolled in B.Sc. (Program) Life Sciences will study and acquire complete knowledge of disciplinary and allied biological sciences. At the end of graduation, they would have expertise which will provide them competitive advantage in pursuing higher studies from India and abroad or seek jobs in academia, research or industries.
PO2	Students should be able to identify, classify and differentiate in types of chordates and nonchordates based on their morphological, anatomical and systemic organization. This will create a curiosity and awareness among them to explore the animal diversity and take up wildlife photography or wildlife exploration as a career option. The procedural knowledge about identifying and classifying animals will help students professional advantages in teaching, research and taxonomist jobs in various Government organizations, such as Zoological Survey of India or National Sanctuaries.
PO3	Acquired practical skills in biochemistry and biotechnology can be used in pursuing career as a scientist in pharmaceutical industry in India or abroad.
PO4	Students will be gaining basic experimental skills in genetics, biotechnology, qualitative and quantitative microscopy, and also enzymology that will give them an edge to pursue higher studies.
PO5	The skill enhancement courses will hone skills in rearing fish, bees and silk moth for generating self-employment.
PO6	Students can acquire expertise to join clinical and research laboratories for diagnostic assays, haematology, histopathology, staining procedures etc.
PO7	They will be able to examine and assess some basic physiological functions and interpret physiological charts.

COURSE OUTCOMES (CO): B.Sc. LIFE SCIENCE ZOOLOGY COMPONENT

SEMESTER 1: CC1: Animal Diversity									
Code	Name of the Paper	Course Outcome: CO	Statement						
		CO1	Learn Morpho-taxonomy and structural organization of non-chordate and chordate groups.						
		CO2	Acquire knowledge of diversity of non-chordate and chordate groups.						
UPC-2232521101	CC1 : Animal diversity	CO3	Learn evolutionary relationships and phylogeny of non-chordates and chordates through functional and structural similarities.						
		CO4	Understand the economic importance of non-chordates and chordates and their significance in the ecosystem.						
		CO5	Comprehend the economic importance of non-chordates, their interaction with the environment and role in the ecosystem.						
		CO6	Promote shared learning through practical classes, class room presentations and projects.						

Papers	SEMI	ESTER I						
		Program (Dutcome :					
	Course	PO1	PO2	PO5	PO6	PO7		
	Outcome:							
	CO							

	CO1		\checkmark			
CC1	CO2	\checkmark				
	CO3		\checkmark			
	CO4					
	CO5					
	C06					

CC2: C	Semester -II CC2: Comparative Anatomy and Development Biology of Vertebrates								
Code	Name of the Paper	Course Outcome: CO	Statement						
		C01	Know about the levels of organization among different groups of vertebrates.						
		CO2	Understand that different organs and organ systems integrate with each other to impart proper regulation of a particular function.						
	2 CC2 : Comparative Anatomy and Development Biology of Vertebrates	CO3	Understand how the various organs evolved during the course of evolution through succession.						
UPC-42231202		CO4	Know the evolution of different concepts in developmental biology.						
		CO5	Be able to understand the process of gamete formation from stem cell population to mature ova and sperm.						
		CO6	Be able to comprehend the sequence of steps leading to the formation of gametes and development of embryo						
		CO7	Learn the mechanisms underpinning cellular diversity and specificity in animals.						
		CO8	Study the methods and tools related to developmental biology which help to understand different processes of embryogenesis.						

Papers		SEMESTER II: COPO MAPPING									
		Program Outcome: PO									
	Course	PO1	PO2	PO	PO	PO5	PO6	PO7			
	Outcome:			3	4						
	CO										
	CO1	√									
CC2	CO2	\checkmark				✓					
	CO3	\checkmark									
	CO4		\checkmark			\checkmark					
	CO5					\checkmark	\checkmark				
	CO6					✓	\checkmark				
	CO7					\checkmark	\checkmark	\checkmark			
	CO8					\checkmark	\checkmark	\checkmark			

	Semester -III									
CC3: Physiology and Biochemistry										
Code	Name of the Paper	Course Outcome: CO	Statement							
		CO1	Have an increased knowledge of human physiology and be able to appreciate its functions.							
		CO2	Understand the functions of major physiological systems in body.							
		CO3	Recognise and identify principal tissue structures.							
UPC: 422343301	CC3: Physiology and Biochemistry	C04	Have understanding of the metabolic pathways of carbohydrates, proteins and fats; and appreciate how the cells harness energy.							
		C05	Understand the importance of enzymes, mechanism of working and kinetics.							
		C06	Relate how biochemical systems interact to yield integrated physiological responses.							
		C07	Understand the principles and approach to experimental design.							
		C08	Perform, analyse and interpret basic experiments and observations in physiology and biochemistry.							

Papers		SEMESTER III: COPO MAPPING									
		Program Outcome: PO									
	Course	PO1	PO2	PO3	PO4	PO	PO6	PO7			
	Outcome:					5					
	CO										
	CO1			✓							
CC3	CO2			\checkmark							
	CO3				\checkmark			\checkmark			
	CO4						✓				
	CO5			✓	✓		✓				
	CO6				✓		✓				
	CO7				\checkmark		\checkmark	\checkmark			
	CO8				✓		✓				

Semester -IV

CC4: Genetics and Evolutionary Biology

Code	Name of the	Course	Statement
	Paper	Outcome:	
		CO	
		CO1	Help students understand the basic
			principles of pedigree analysis and
			will be able to
			construct and analyse pedigree related
			problems for inherited traits.
		CO2	Students would gain knowledge on
			chromosomal and genetic mutation.
UPC:42234406	CC4: Genetics	CO3	Students would be able to describe the
	and Evolutionary		chromosomal sex-determination
	Biology		mechanisms and
			dosage compensation.
		CO4	Students would be able to understand
			the major events in history of life and
			major theories of
			evolution
		C05	Students would be able to appreciate
			the contribution of fossil studies in
			evolution and the
			phylogeny of horse.

C06	Students would be able to calculate the gene and allele frequency using Hardy-Weinberg law and analyse population genetics problems.
C07	Students would understand the fundamental concepts of natural selection, speciation, mass extinction and macro-evolution.

Papers	SEMESTER IV: COPO MAPPING									
		Program Outcome: PO								
	Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7		
	Outcome:									
	CO									
	CO1				\checkmark					
CC4	CO2	\checkmark								
	CO3				\checkmark					
	CO4				\checkmark					
	CO5				✓					
	CO6				✓					
	CO7				\checkmark					

	DSE-1:	Semester V Animal Bio	V otechnology
		CO1	Use or demonstrate the basic techniques of biotechnology; like DNA isolation, PCR, transformation, restriction, digestion etc.
UPC:42237903	DSE-1 Animal Biotechnology	CO2	Devise a strategy to manipulate genetic structure of an organism for the improvement in any trait or its well-being based on the techniques.
		CO3	Understand the ethical and social issues raised regarding GMOs

	CO4	Apply the knowledge for designing a
		proposal for research project.

Papers	SEMESTER V: COPO MAPPING for DSE 1								
		Program Outcome: PO							
	Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	
	Outcome:								
	CO								
DSE 1	CO1				✓				
	CO2	√			✓				
	CO3				✓				
	CO4	\checkmark			\checkmark				

Semester VI DSE-2: Immunology						
Code	Name of the Paper	Course Outcome: CO	Statement			
		CO1	Study hematopoiesis to know the concepts of stem cells and their differentiation into progenitor stem cells and adult lineages.			
		CO2	Learn the concepts of innate and acquired immunity.			
UPC:42237904	DSE 2: Immunology	CO3	Understand adaptive immune responses and sequential phases- antigen recognition by lymphocytes, their proliferation, differentiation into effector and memory cells and elimination of pathogens.			
		CO4	Learn about major histocompatibility complex and their role in transplantation immunity and Autoimmunity combat with the host immune system.			
		CO5	Gain knowledge about the Complement system and how they interact and activate a catalytic cascade to remove immunogens.			

C06	Study the role of various cytokines involved in cell to cell communication in the removal of pathogens.
C07	Understand the advent of hypersensitivities due to inappropriate innate and adaptive immune responses.
C08	Know the basic immunological aspects to comprehend the newer strategies in vaccine design, and efforts to treat autoimmunity, hypersensitivity and immunodeficiency.

Papers	SEMESTER VI: COPO MAPPING for DSE 2								
		Program Outcome: PO							
	Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	
	Outcome:								
	CO								
	CO1						\checkmark		
DSE 2	CO2	\checkmark					\checkmark		
	CO3	✓							
	CO4	✓							
	CO5								
	CO6	✓							
	CO7	✓							
	CO8	✓							

III. B. Sc. LIFE SCIENCE CHEMISTRY COMPONENT

Program Outcomes (PO): B.Sc (Prog) Life Science

LOCF

S.No.	Program Outcomes	
	(PO): B.Sc Life	Statements
	Sciences	
	(Chemistry)	
1.	PO1	Knowledge: Students acquire theoretical knowledge and
		understanding of the fundamental concepts, principles
		and processes in main branches of chemistry, namely,
		organic chemistry, inorganic chemistry, physical
		chemistry, analytical chemistry and biochemistry. In
		depth understanding is the outcome of transactional
		effectiveness and treatment of specialized course
		contents. Width results from the choice of electives that
		students are offered.
2.	PO2	Laboratory Skills: A much valued learning outcome of
		this programme is the laboratory skills that students
		develop during the course. Quantitative techniques
		gained through hands on methods opens choice of
		joining the industrial laboratory work force early on. The
		programme also provides ample training in handling
		basic chemical laboratory instruments and their use in
		analytical and biochemical determinations.
		Undergraduates on completion of this programme can
		cross branches to join analytical, pharmaceutical,
		material testing and biochemical labs besides standard
		chemical laboratories.
3.	PO3	Communication: Communication is a highly desirable
		attribute to possess. Opportunities to enhance students'
		ability to write methodical, logical and precise reports are
		inherent to the structure of the programme. Techniques
		that effectively communicate scientific chemical content
		to large audiences are acquired through oral and poster
		presentations and regular laboratory report writing.
4	PO4	Capacity Enhancement: Modern day scientific
		environment requires students to possess ability to think
		independently as well as be able to work productively in
		groups. This requires some degree of balancing. This life
		science programme course is designed to take care of this
		important aspect of student development through
		effective teaching learning process.
5	PO5	Portable Skills: Besides communication skills, the
		programme develops a range of portable or transferable
		skills in students that they can carry with them to their

	new work environment after completion of this life science programme course. These are problem solving, numeracy and mathematical skills- error analysis, units and conversions, information retrieval skills, IT skills and organizational skills. These are valued across work environments
--	--

COURSE OUTCOMES (CO): B. Sc. LIFE SCIENCE CHEMISTRY COMPONENT

		MESTER 1	
Hydrocarb		1	
Code	Name of the Paper	Course Outcome : CO	Statement
42171103	CC1 : Atomic Structure, Bonding, General Organic Chemistry & Aliphatic Hydrocarbons	CO1 CO2	The course enables the students to solve the conceptual questions using the knowledge gained by studying the quantum mechanical model of the atom, quantum numbers, electronic configuration, radial and angular distribution curves, shapes of s, p and d orbitals, and periodicity in atomic radii, ionic radii, ionization enthalpy and electron affinity of elements. The students can draw the plausible structures and geometries of molecules using radius ratio rules, VSEPR theory and MO diagrams (homo- & hetero-nuclear diatomic molecules).
		CO3	The students can understand the concept of lattice energy using Born- Landé and Kapustinskii equation.
		CO4	Students can rationalize the conductivity of metals, semiconductors and insulators based on the Band theory.
		CO5	Students can understand the importance and application of chemical bonds, inter-molecular and intramolecular weak chemical forces

	and their effect on melting points, boiling points, solubility and energetics of dissolution.
CO6	Students can understand and explain the differential behavior of organic compounds based on fundamental concepts learnt.
CO7	Students can be able to formulate the mechanism of organic reactions by recalling and correlating the fundamental properties of the reactants involved.
CO8	Students can learn and identify many organic reaction mechanisms including free radical substitution, electrophilic addition and electrophilic aromatic substitution.

Papers	SEMESTER I: COPO MAPPING								
		Program Outcome : PO							
	Course Outcome: CO	PO1	PO2	PO3	PO4	PO5			
	CO1	\checkmark			\checkmark				
CC1	CO2	\checkmark		\checkmark					
	CO3	\checkmark	\checkmark		\checkmark				
	CO4	\checkmark	\checkmark		\checkmark				
	CO5	\checkmark	\checkmark		\checkmark				
	CO6	\checkmark		\checkmark	\checkmark				
	CO7		\checkmark	\checkmark	\checkmark				
	CO8		\checkmark		\checkmark				

SEMESTER I1:

CC2: Chemical Energetics, Equilibria and Functional Group Organic Chemistry-I

Code	Name of the Paper	Course Outcome: CO	Statement
		CO1	Students can understand the laws of thermodynamics, thermochemistry and
			equilibrium.

		CO2	Students can understand concept of pH
42171205	CC2:Chemical		and its effect on the various physical and
	Energetics,		chemical properties of the compounds.
	Equilibria and	CO3	Students can use the concepts learnt to
	Functional Group		predict feasibility of chemical reactions
	Organic Chemistry-		and to study the behaviour of reactions in
	Ι		equilibrium.
		CO4	Students can understand the fundamentals
			of functional group chemistry through the
			study of methods of preparation, properties
			and chemical reactions with underlying
			mechanism.
		CO5	Students can use concepts learnt to
			understand stereochemistry of a reaction
			and predict the reaction outcome
		CO6	Students can design newer synthetic routes
			for various organic compounds.

		SE	MESTER II	: COPO M	MAPPING	
Papers			Program (Dutcome :	PO	
	Course	PO1	PO2	PO3	PO4	PO5
	Outcome:					
	CO					
	CO1	\checkmark			\checkmark	
	CO2	\checkmark	\checkmark		\checkmark	
CC2	CO3	\checkmark	\checkmark		\checkmark	
	CO4	\checkmark	\checkmark		\checkmark	
	CO5	\checkmark	\checkmark			
	CO6		\checkmark	\checkmark	\checkmark	

SEMESTER II1:

CC3: Solutions, Phase Equilibrium, Conductance, Electrochemistry and Functional Group Organic Chemistry-II

Code	Name of the Paper	Course Outcome: CO	Statement
42174304	CC3 : Solutions, Phase Equilibrium, Conductance, Electrochemistry	CO1	Students will be able to explain the concepts of different types of binary solutions- miscible, partially miscible and immiscible along with their applications.
	and Functional	CO2	Students will be able to explain the thermodynamic aspects of equilibrium

Group Organic		between phases and draw phase diagrams of
Chemistry-II		simple one component and two component
		systems.
	CO3	Students will be able to explain the factors
		that affect conductance, migration of ions
		and application of conductance
		measurement.
	CO4	Students will be able to understand different
		types of galvanic cells, their Nernst
		equations, measurement of emf, calculations
		of thermodynamic properties and other
		parameters from the emf measurements.
	CO5	Students will be able to understand and
		demonstrate how the structure of
		biomolecules determines their chemical
		properties, reactivity and biological uses.
	CO6	Students will be able to design newer
		synthetic routes for various organic
		compounds

	SEMESTER III: COPO MAPPING								
Papers		Program Outcome : PO							
	Course Outcome: CO	PO1	PO2	PO3	PO4	PO5			
CC3	CO1	\checkmark	\checkmark		\checkmark				
	CO2	\checkmark	\checkmark	\checkmark	\checkmark				
	CO3	\checkmark	\checkmark		\checkmark				
	CO4	\checkmark	\checkmark		\checkmark				
	CO5		\checkmark	\checkmark					
	CO6		\checkmark	\checkmark	\checkmark				

SEMESTER IV:

CC4: Chemistry of s- and p-Block Elements, States of Matter and Chemical Kinetics Chemistry of s- and p-Block Elements, States of Matter and Chemical Kinetics

Code	Name of the Paper	Course	Statement
		Outcome:	
		СО	

		CO1	Students can understand the
		001	chemistry and applications of s-
			and p-block elements.
		CO2	Students can derive ideal gas law
		002	from kinetic theory of gases and
42174404	CC4: Chemistry of s- and		explain why the real gases deviate
12171101	p-Block Elements, States		from ideal behaviour.
	of Matter and Chemical	CO3	Students can explain Maxwell-
	Kinetics	005	Boltzmann distribution, critical
	Killeties		constants and viscosity of gases
		CO4	Students can explain the
		04	properties of liquids especially
			surface tension and viscosity.
		CO5	*
		COS	Students can explain symmetry
			elements, crystal structure
		001	specially NaCl, KCl and CsCl
		CO6	Students can define rate of
			reactions and the factors that
		~~=	affect the rates of reaction.
		CO7	Students can understand the
			concept of rate laws e.g., order,
			molecularity, half-life and their
			determination
		CO8	Students can learn about various
			theories of reaction rates and how
			these account for experimental
			observations

Papers	SEMESTER IV: COPO MAPPING					
			Program	: PO		
	Course Outcome: CO	PO1	PO2	PO3	PO4	PO5
CC4	CO1	\checkmark		\checkmark		
	CO2	\checkmark		\checkmark		
	CO3	\checkmark	\checkmark			
	CO4	\checkmark	\checkmark		\checkmark	
	CO5	\checkmark		\checkmark		
	CO6	\checkmark	\checkmark	\checkmark		
	CO7	\checkmark	\checkmark	\checkmark		
	CO8	\checkmark	\checkmark	\checkmark	\checkmark	

Code	Name of the Paper	Course Outcome: CO	Statement
42177925	DSE 1 : Chemistry of	CO1	Students will be able to understand chemistry of d and f block elements, Latimer diagrams, properties of coordination compounds and VBT and CFT for bonding in coordination compounds
	d-Block Elements, Quantum Chemistry and Spectroscopy	CO2	Students will be able to understand basic principles of quantum mechanics: operators, eigen values, averages, probability distributions.
		CO3	Students will be able to understand and use basic concepts of microwave, IR and UV-VIS spectroscopy for interpretation of spectra.
		CO4	Students will be able to explain Lambert-Beer's law, quantum efficiency and photochemical processes.

Papers	SEMESTER V: COPO MAPPING								
	Program Outcome : PO								
	Course Outcome: CO	PO1	PO2	PO3	PO4	PO5			
DSE 1	CO1	✓		\checkmark					
	CO2	\checkmark			\checkmark				
	CO3	✓	\checkmark	\checkmark	\checkmark				
	CO4	\checkmark	\checkmark		\checkmark				

SEMESTER VI:										
DSE 2: Molecules of life										
Unique Paper Code	Name of the Paper	Course Outcome: CO	Statement							
		CO1	Students can learn and demonstrate how the structure of biomolecules determines their chemical properties, reactivity and biological uses.							
42177913	DSE 2 : Molecules of life	CO2	Students can gain an insight into mechanism of enzyme action and inhibition.							
		CO3	Students can understand the basic principles of drug- receptor interaction and SAR.							
		CO4	Students can understand biological processes like replication, transcription and translation.							
		CO5	Students can demonstrate an understanding of metabolic pathways, their inter- relationship, regulation and energy production from biochemical processes.							

Papers	SEMESTER VI: COPO MAPPING									
	Program Outcome : PO									
DSE 2	Course Outcome: CO	PO1	PO2	PO3	PO4	PO5				
	CO1	\checkmark		\checkmark						
	CO2	\checkmark	\checkmark		\checkmark					
	CO3	\checkmark	\checkmark		\checkmark					
	CO4	\checkmark	\checkmark		\checkmark					
	CO5	\checkmark	\checkmark		\checkmark					